0
Détail de l'auteur
Auteur Donal F. O’Shea |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche
Forecasting vaping health risks through neural network model prediction of flavour pyrolysis reactions / Akihiro Kishimoto (2024)
Titre : Forecasting vaping health risks through neural network model prediction of flavour pyrolysis reactions Type de document : document électronique Auteurs : Akihiro Kishimoto, Auteur ; Dan Wu, Auteur ; Donal F. O’Shea, Auteur Editeur : Springer Nature Année de publication : 2024 Collection : Scientific Reports num. 14 Importance : 14 p. Présentation : graph., tab., ill. Langues : Anglais (eng) Catégories : [TABAC] CANDIDATS:e-cigarette
[TABAC] chimie du tabac
[TABAC] chimie du tabac:constituant:additif:agent de saveur
[TABAC] tabagisme:effet du tabac:effet neurologiqueMots-clés : e-liquide Index. décimale : TA 1.1.1 Cigarettes (« normales », électroniques, aromatisées,…) Résumé : Vaping involves the heating of chemical solutions (e-liquids) to high temperatures prior to lung inhalation. A risk exists that these chemicals undergo thermal decomposition to new chemical
entities, the composition and health implications of which are largely unknown. To address this concern, a graph-convolutional neural network (NN) model was used to predict pyrolysis reactivity
of 180 e-liquid chemical flavours. The output of this supervised machine learning approach was a dataset of probability ranked pyrolysis transformations and their associated 7307 products. To refine this dataset, the molecular weight of each NN predicted product was automatically correlated with experimental mass spectrometry (MS) fragmentation data for each flavour chemical. This blending of deep learning methods with experimental MS data identified 1169 molecular weight matches that prioritized these compounds for further analysis. The average number of discrete matches per flavour between NN predictions and MS fragmentation was 6.4 with 92.8% of flavours having at least one match. Globally harmonized system classifications for NN/MS matches were extracted
from PubChem, revealing that 127 acute toxic, 153 health hazard and 225 irritant classifications were predicted. This approach may reveal the longer-term health risks of vaping in advance of clinical diseases emerging in the general population.En ligne : https://doi.org/10.1038/s41598-024-59619-x Format de la ressource électronique : Article en ligne Permalink : https://biblio.fares.be/opac_css/index.php?lvl=notice_display&id=10289 Aucun avis, veuillez vous identifier pour ajouter le vôtre !