0
Résultat de la recherche
4 recherche sur le mot-clé
'e-liquide' 



E-cigarette use among high school students—a cross‑sectional study of associated risk factors for the use of flavour‑only and nicotine vapes / Janni Leung (2023)
![]()
Titre : E-cigarette use among high school students—a cross‑sectional study of associated risk factors for the use of flavour‑only and nicotine vapes Type de document : document électronique Auteurs : Janni Leung, Auteur ; Calvert Tisdale, Auteur ; Jisu Choi, Auteur Editeur : Springer Année de publication : 2023 Collection : International Journal of Mental Health and Addiction Importance : 15 p. Présentation : tab. Langues : Anglais (eng) Catégories : [TABAC] CANDIDATS:e-cigarette
[TABAC] chimie du tabac:constituant:additif:agent de saveur
[TABAC] chimie du tabac:constituant:alcaloïde:nicotine
[TABAC] étude
[TABAC] tabagisme:risque:facteur associé
[TABAC] tabagisme:tabagisme actif:tabagisme adolescentMots-clés : e-liquide Index. décimale : TA 1.1.1 Cigarettes (« normales », électroniques, aromatisées,…) Résumé : The aim of this study is to examine e-cigarette use among high school students and the associated risk factors for the use of flavour-only or nicotine vapes. Grade 12 students (N = 855) of 2020 from nine Australian schools completed a cross-sectional self-report survey. Correlates examined included age, gender, Aboriginal or Torres Strait Islander, parental and family characteristics, truancy, mental health (depression and anxiety), alcohol use and cigarette smoking. Overall, 74% reported that they had never used an e-cigarette or vaped, 12.5% had for flavour-only, and 13.5% had for nicotine vapes. Multinomial adjusted logistic regressions showed that males and teens reporting frequent alcohol or cigarette use had higher odds of vaping. In adolescents who had used an e-cigarette, half had used a nicotine vape. Those who engaged in risky drinking and smoked cigarettes were most likely to also use e-cigarettes, implying that this may be a high-risk group. En ligne : https://doi.org/10.1007/s11469-023-01099-7 Format de la ressource électronique : Article en ligne Permalink : https://biblio.fares.be/opac_css/index.php?lvl=notice_display&id=10266 Aucun avis, veuillez vous identifier pour ajouter le vôtre !
The combination of propylene glycol and vegetable glycerin e‑cigarette aerosols induces airway inflammation and mucus hyperconcentration / Michael D. Kim (2024)
![]()
Titre : The combination of propylene glycol and vegetable glycerin e‑cigarette aerosols induces airway inflammation and mucus hyperconcentration Type de document : document électronique Auteurs : Michael D. Kim, Auteur ; Samuel Chung, Auteur ; Nathalie Baumlin, Auteur ; Jian Qian, Auteur ; Robert N. Montgomery, Auteur Editeur : Springer Nature Année de publication : 2024 Collection : Scientific Reports num. 14 - 1942 Importance : 14 p. Présentation : graph., ill. Langues : Anglais (eng) Catégories : [TABAC] CANDIDATS:e-cigarette
[TABAC] tabagisme:pathologie:pathologie respiratoire
[TABAC] tabagisme:risqueMots-clés : e-liquide Index. décimale : TA 1.1.1 Cigarettes (« normales », électroniques, aromatisées,…) Résumé : Despite concerns over their safety, e-cigarettes (e-cigs) remain a popular tobacco product. Although nicotine and flavors found in e-cig liquids (e-liquids) can cause harm in the airways, whether the delivery vehicles propylene glycol (PG) and vegetable glycerin (VG) are innocuous when inhaled remains unclear. Here, we investigated the effects of e-cig aerosols generated from e-liquid containing only PG/VG on airway inflammation and mucociliary function in primary human bronchial epithelial cells (HBEC) and sheep. Primary HBEC were cultured at the air–liquid interface (ALI) and exposed to e-cig aerosols of 50%/50% v/v PG/VG. Ion channel conductance, ciliary beat frequency, and the expression of inflammatory markers, cell type-specific markers, and the major mucins MUC5AC and MUC5B were evaluated after seven days of exposure. Sheep were exposed to e-cig aerosols of PG/VG for five days and mucus concentration and matrix metalloproteinase-9 (MMP-9) activity were measured from airway secretions. Seven-day exposure of HBEC to e-cig aerosols of PG/VG caused a significant reduction in the activities of apical ion channels important for mucus hydration, including the cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+- activated, and voltage-dependent K+ (BK) channels. PG/VG aerosols significantly increased the mRNA expression of the inflammatory markers interleukin-6 (IL6), IL8, and MMP9, as well as MUC5AC.The increase in MUC5AC mRNA expression correlated with increased immunostaining of MUC5AC protein in PG/VG-exposed HBEC. On the other hand, PG/VG aerosols reduced MUC5B expression leading overall to higher MUC5AC/MUC5B ratios in exposed HBEC. Other cell type-specific markers, including forkhead box protein J1 (FOXJ1), keratin 5 (KRT5), and secretoglobin family 1A member 1 (SCGB1A1) mRNAs, as well as overall ciliation, were significantly reduced by PG/VG exposure. Finally,
PG/VG aerosols increased MMP-9 activity and caused mucus hyperconcentration in sheep in vivo. E-cig aerosols of PG/VG induce airway inflammation, increase MUC5AC expression, and cause dysfunction
of ion channels important for mucus hydration in HBEC in vitro. Furthermore, PG/VG aerosols increase MMP-9 activity and mucus concentration in sheep in vivo. Collectively, these data show that e-cig aerosols containing PG/VG are likely to be harmful in the airways.
En ligne : https://doi.org/10.1038/s41598-024-52317-8 Format de la ressource électronique : Article en ligne Permalink : https://biblio.fares.be/opac_css/index.php?lvl=notice_display&id=10227 Aucun avis, veuillez vous identifier pour ajouter le vôtre !
Titre : Vaping and the brain : effects of electronic cigarettes and e-liquid substances Type de document : document électronique Auteurs : Wilfredo López-Ojeda, Auteur ; Robin A. Hurley, Auteur Editeur : American Psychiatric Association Année de publication : 2024 Collection : The journal of neuropsychoiatry and clincal neurosciences num. 36:1 Importance : 6 p. Présentation : ill. Langues : Anglais (eng) Catégories : [TABAC] CANDIDATS:e-cigarette
[TABAC] chimie du tabac:constituant:additif
[TABAC] chimie du tabac:constituant:additif:agent de saveur
[TABAC] tabagisme:effet du tabac:effet neurologique
[TABAC] tabagisme:effet du tabac:toxicité
[TABAC] tabagisme:tabagisme passifMots-clés : e-liquide Index. décimale : TA 1.1.1 Cigarettes (« normales », électroniques, aromatisées,…) Permalink : https://biblio.fares.be/opac_css/index.php?lvl=notice_display&id=10178 Aucun avis, veuillez vous identifier pour ajouter le vôtre !
Forecasting vaping health risks through neural network model prediction of flavour pyrolysis reactions / Akihiro Kishimoto (2024)
![]()
Titre : Forecasting vaping health risks through neural network model prediction of flavour pyrolysis reactions Type de document : document électronique Auteurs : Akihiro Kishimoto, Auteur ; Dan Wu, Auteur ; Donal F. O’Shea, Auteur Editeur : Springer Nature Année de publication : 2024 Collection : Scientific Reports num. 14 Importance : 14 p. Présentation : graph., tab., ill. Langues : Anglais (eng) Catégories : [TABAC] CANDIDATS:e-cigarette
[TABAC] chimie du tabac
[TABAC] chimie du tabac:constituant:additif:agent de saveur
[TABAC] tabagisme:effet du tabac:effet neurologiqueMots-clés : e-liquide Index. décimale : TA 1.1.1 Cigarettes (« normales », électroniques, aromatisées,…) Résumé : Vaping involves the heating of chemical solutions (e-liquids) to high temperatures prior to lung inhalation. A risk exists that these chemicals undergo thermal decomposition to new chemical
entities, the composition and health implications of which are largely unknown. To address this concern, a graph-convolutional neural network (NN) model was used to predict pyrolysis reactivity
of 180 e-liquid chemical flavours. The output of this supervised machine learning approach was a dataset of probability ranked pyrolysis transformations and their associated 7307 products. To refine this dataset, the molecular weight of each NN predicted product was automatically correlated with experimental mass spectrometry (MS) fragmentation data for each flavour chemical. This blending of deep learning methods with experimental MS data identified 1169 molecular weight matches that prioritized these compounds for further analysis. The average number of discrete matches per flavour between NN predictions and MS fragmentation was 6.4 with 92.8% of flavours having at least one match. Globally harmonized system classifications for NN/MS matches were extracted
from PubChem, revealing that 127 acute toxic, 153 health hazard and 225 irritant classifications were predicted. This approach may reveal the longer-term health risks of vaping in advance of clinical diseases emerging in the general population.En ligne : https://doi.org/10.1038/s41598-024-59619-x Format de la ressource électronique : Article en ligne Permalink : https://biblio.fares.be/opac_css/index.php?lvl=notice_display&id=10289 Aucun avis, veuillez vous identifier pour ajouter le vôtre !